

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022 Question Paper Log Number P66652A Publications Code WST01_01_2201_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question	Sahama	Morke
Number	Schelle	IVIALKS

1. (a)	$P(C') = \frac{103}{120}$ oe awrt 0.858	B1 (1)	
(b)	$\mathbf{P}(A \cap B \cap C') = 0$	B1 (1)	
(c)	$P(A \cup B \cup C') = \frac{9+3+2+5+1+93}{120}$ or $P(A \cup B \cup C') = 1 - \frac{7}{120}$	M1	
	$= \frac{113}{120}$ oe awrt 0.942	A1 (2)	
(d)	P(At most 1) = P(0 or 1) = $\frac{93+9+7+1}{120}$ or $\frac{120-2-5-3}{120}$ 110	M1	
	$= \frac{120}{120}$ awrt 0.917	A1 (2)	
(e)	$P(A At most 1) = \frac{\frac{9}{120}}{\frac{110}{120}}$	M1	
	$=\frac{9}{110}$ oe awrt 0.0818	A1 (2)	
(f)	$\left[P(X=0) = \frac{93}{120} \right] P(X=1) = \frac{17}{120} P(X=2) = \frac{8}{120} P(X=3) = \frac{2}{120}$	M1	
	$E(X) = \left[\frac{93}{120} \times 0\right] + \frac{17}{120} \times 1 + \frac{8}{120} \times 2 + \frac{2}{120} \times 3$	M1	
	$=\frac{13}{40}$ or 0.325 oe	A1 (3)	
	Notes	[11]	
(a)	B1 (allow awrt 0.858)		
(b) (c)	B1 cao condone $0/120$ but do not allow other denominators M1 for either correct expression for $P(A \cup B \cup C')$		
(0)	A1 o.e. (allow awrt 0.942)		
(d)	M1 correct expression		
	A1 $\frac{11}{12}$ o.e. (allow awrt 0.917)		
(e)	m/120		
	with rollow through their part (d) if num < denomining $\frac{1}{110}$ or if the fraction in (d) f	ias	
	denominator of 120 $\frac{m}{\text{"their 110"}}$ where $0 < m <$ their 110 Allow $\frac{n}{120 - 3 - 2 - 5}$ or $\frac{n}{110}$ $0 < n < 110$	where	
(f)	A1 o.e. (allow awrt 0.0818) 1 st M1 for the probability distribution of X (condone missing $P(X = 0)$) awrt 0.14 awrt 0.067 and awrt 0.017 May be implied by a correct expression for $E(X)$. At least 2 correct must be associated with the correct x value		
	2^{nd} M1 correct follow through expression for E(X) ft their probabilities and X values A1 Dep on both previous method marks being awarded. Working must be checked. A correct answer with no working scores 3/3 SC P(X = 17) = 17/120 (awrt 0.14) P(X = 8) = 8/120 (awrt 0.067) P(X = 14) = 14/120 (awrt 0.14)	wrt 0.12)	
	leading to awrt 4.58 or 183/40 gains M0M1A0		

Question	
Number	

2. (a)	$S_{dp} = 5240.8 - \frac{1029 \times 50.8}{10} [= 13.48]$	M1	
	$r = \frac{'13.48'}{\sqrt{344.9 \times 0.576}}$	M1	
	= 0.9563834526 awrt 0.956	A1	(3)
(b)(i)	w = 50 - p	B1	
(ii)	-1	B1	
			(2)
(c)	-0.956	B1ft	
			(1)
		[6]	
	Notes		
(a)	1^{st} M1 correct expression for S_{dp}		
	2^{nd} M1 valid attempt at r with their S_{dp} not equal to 5240.8 and the correct denominator	r	
	A1 awrt 0.956		
$(\mathbf{b})(\mathbf{i})$	B1 allow equivalent rearrangements		
(ij)(i) (ii)	$B_1 = 1$ cao		
(c)	B1ft follow through $-1 \times \text{their}(a)$ providing $-1 < \text{their}(a) < 1$		
``			

Question Number	Scheme

3. (a)	lower quartile = 116 upper quartile = 125			B1	
	$"125" + 1.5 \times ("125" - "116") \text{ or } "125" + 1.$	$5 \times (9)$		M1	
	Outlier is greater than 138.5, so $c = 9^*$			A1*cso	(2)
	$\bar{r} = \frac{-96}{100} [= -41]$	$\sum d =$	$= 125 \times 24 - 96[= 2904]$	M1	(3)
(D)	24			1011	
	$d = '\overline{x}' + 125$	$\overline{d} = \frac{-29}{2}$	<u>104*</u>	M1	
			$\overline{d} = 121$	A1	(3)
(c)	$\left[\sigma_x = \sigma_d\right] = \sqrt{\frac{1306}{24}}$			M1	
	1 27		$[\sigma_d] = 7.3767$ awrt <u>7.38</u>	A1	(2)
(d)	$\left[P(D > 118 \mid X < 0) \right] = \frac{P(118 < D < 125)}{P(D < 125)} \text{ or }$	$\frac{P(-7 < 0.5)}{P(X)}$	$\frac{X < 0}{< 0}$ or $\frac{\frac{5}{24}}{\frac{14}{24}}$	M1	
	$=\frac{5}{14}$			A1	
	14				(2)
				[10]	(2)
		No	tes		
(a)	B1 both values correct. Both values must be implied by the $IOP = 0$	be seen	either in the calculation or separately	7. They are	not
	M1 use of $Q_3 + 1.5 \times IQR$ with their value	s. May	be implied by 138.5 if B1 awarded		
	A1*cso for 138.5 and conclusion $c = 9$ (do	not ac	cept $c = 139$) with no errors. Answer	is given so	C
	working must be shown.				
(b)	1 st M1 for correct expression for \overline{x}		1^{st} M1 for correct expression for \sum	d	
	2^{nd} M1 use of $\overline{4}$ $1 = 1, 125$		2^{nd} M1 use of " $\sum d$ " ÷ 24 must be c	lear it is th	eir
	2 will use of $a = x + 125$		sum		
	A1 121				
	NB condone no labelling or incorrect labelli	ing thro	ughout part(b)		
(c)	M1 correct expression $\sqrt{\frac{1306}{24}}$				
(c)	M1 correct expression $\sqrt{\frac{1306}{24}}$ A1 awrt 7.38 final answer				
(c)	M1 correct expression $\sqrt{\frac{1306}{24}}$ A1 awrt 7.38 final answer				
(c) (d)	M1 correct expression $\sqrt{\frac{1306}{24}}$ A1 awrt 7.38 final answer M1 correct probability statement (allow a	a probał	where $0 < k < 14$ to score	e M1)	
(c) (d)	M1 correct expression $\sqrt{\frac{1306}{24}}$ A1 awrt 7.38 final answer M1 correct probability statement (allow a	ı probał	wility of $\frac{k}{14}$ where $0 < k < 14$ to score	e M1)	

Question Number	Scheme	Marks	
4. (a)	$\frac{2}{2}$	B1	
	5	(1)	
(b)	$\mathbf{E}(W) = 3$	B1	
	$\mathbf{E}(5-2W) = 5-2\mathbf{E}(W)$	M1	
	E(X) = -1	A1 (3)	
(c)	$P(X < W) = P(5 - 2W < W) = P(W > \frac{5}{3}) \text{ or } P(W \ge 2)$	(3) M1	
	$=\frac{4}{2}$	A 1	
	5	AI (2)	
(4)(6)			
(u)(i)	$\begin{bmatrix} [y] & 1 & \overline{2} & \overline{3} & \overline{4} & \overline{5} \end{bmatrix}$	B1	
	$[p]$ $\frac{1}{-}$ $\frac{1}{-}$ $\frac{1}{-}$ $\frac{1}{-}$ $\frac{1}{-}$ $\frac{1}{-}$		
	5 5 5 5 5		
(ii)	$F(Y) = \frac{1}{1} \begin{pmatrix} 1 + \frac{1}{2} & + \frac{1}{2} \end{pmatrix} \text{ or } \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \begin{bmatrix} -\frac{137}{2} - 0.4566 \end{bmatrix}$	M1	
	$E(1) = 5 \begin{pmatrix} 1 & 2 & -5 \\ 2 & -5 \end{pmatrix} = 5 \begin{bmatrix} 1 & 15 & 20 & 25 \\ -300 & -5 & -5 \end{bmatrix}$	1011	
	$E(Y^{2}) = \frac{1}{5} \left(1^{2} + \left(\frac{1}{2}\right)^{2} + \dots + \left(\frac{1}{5}\right)^{2} \right) \text{ or } \frac{1}{5} + \frac{1}{20} + \frac{1}{45} + \frac{1}{80} + \frac{1}{125} \left[= \frac{5269}{18000} = 0.2927.\dots \right]$	M1	
	$Var(Y) = '0.2927' - ('0.4566')^2$ awrt <u>0.0842</u>	M1 A1	
		(5)	
(e)	$Var(2-3Y) = (-3)^{2} Var(Y)$ awrt 0.758	MI A1ft	
		(2)	
(a)	B1 oe	[13]	
(b)	B1 sight of $E(W) = 3$ or the x values 3, 1, -1, -3, -5 (they may be added)		
	M1 use of $E(5-2W) = 5-2E(W)$ or $\frac{1}{-}(3+1++5)$ Condone use of X instead of	W	
	A1 cao and labelled $E(X)$		
(c)	M1 for identifying $W \ge \frac{5}{2}$ or $W \ge 2$ eg $1 - P(W = 1) \ge 2$ or $1 - P(W \le 1) \ge 2$		
	Al oe		
(d)(i)	B1 Correct distribution (probabilities may be implied by correct use). May be seen in any part		
(11)	M1 attempt at expression for $E(Y)$ using their values of y and p (at least 2 terms seen) or awrt 0.457 (0.45 if have 0.3 rather than 1/3) Condone incorrect labelling		
	M1 attempt at expression for $E(Y^2)$ using their values of y and p (at least 2 terms seen) or awrt 0.293		
	(0.2885 if have 0.3 rather than 1/3) Condone incorrect labelling M1 For use of $ \mathbf{F}(\mathbf{V}^2) = (\mathbf{F}(\mathbf{V}))^2$ is the invertice for $\mathbf{F}(\mathbf{V}^2) = 1$ F(12)		
	NIT FOLUSE OF $E(I) = (E(I))$ in their values for $E(I')$ and $E(I')$ 947 947		
	At a wit 0.0642 of $\frac{11250}{11250}$		
(e)	M1 for use of (-3) var (Y) with their Var $(Y) > 0$ condone $(3)^2$ Var (Y) 947		
	A1ft $\frac{217}{1250}$ or $9 \times$ "their part (d) > 0" evaluated correctly to 3sf or exact fraction		

Question Number	Scheme	Marks	
5. (a)	$P(X < 37) = P\left(Z < \frac{37 - 40}{2.4}\right) = P(Z < -1.25)$	M1	
	= 1 - 0.8944; = 0.105649 awrt <u>0.106</u>	M1; A1 (3)	
(b)	P(one value is greater than 32) = $\sqrt{0.16}$ [=0.4]	M1	
	$\frac{32-m}{2} = 0.2533$	M1 B1	
	2.4	MI DI	
	m = 31.392 awrt <u>31.4</u>	A1 (4)	
(c)	$P(Y < 0) = P\left(Z < \frac{0-4}{8}\right) = P\left(Z < -0.5\right) [= 0.3085]$	M1	
	Let <i>X</i> be the number of negative values		
	$P(X \ge 1) = 1 - P(X = 0)$ oe	M1	
	$= 1 - (0.6915)^5$	M1	
	= 0.84188 awrt 0.842	A1 (4)	
		[11]	
(a)	Notes		
(a)	2^{nd} M1 for $1 - p$ (where $0.88) Implied by correct answer.A1 for awrt 0.106 (calc. 0.105649)$		
(b)	1^{st} M1 correct expression for one value > 32 (may be implied by sight of 0.2533 Allow between 0.25 and 0.26 inclusive)	any value	
	2^{nd} M1 standardising 32 with <i>m</i> and 2.4 and setting equal to <i>z</i> value $0.2 < z < 0.3$		
	B1 for $z = \pm 0.2533$ or better (calc gives 0.2533470931) used in a linear equation for <i>m</i>		
	A1 awrt 31.4 or better		
	SC [using 0.16]Allow M0M1 B0 A0 for $\frac{32-m}{2.4} = z$ where $0.99 \le z < 1.04$		
(c)	1 st M1 standardising 0 with 4 and 8 (allow \pm) or seeing 0.3085 or 0.6915 2 nd M1 realising they need to find $1 - P(X = 0)$ ie writing or using $1 - P(\text{no negative value})$ May be implied by $1 - p^5$ 0	es)oe	
	3 rd M1 use of $1 - p^5$ where p is $1 - $ "their P $\left(Z < \frac{0-4}{8}\right)$ "		
	A1 awrt 0.842 (tables: 0.8418894 calculator: 0.84193233)		
	NB If they use Binomial		
	 and get 0.842 full marks. and get 0.125 then award M1M1M0A0 		
	 otherwise send to Review 		

Question Number		Scheme	Marks
6. (a)	$\overline{f} = 10.8 + 0.748 \overline{p} = 10.8 + 0.748(62)$	4) awrt <u>57.5</u>	M1 A1
(b)	For each additional <u>mark</u> scored on the <u>increases</u> by 0.748	pre-test , the average mark on the final exam	(2) B1 (1)
(c)	The statement is not reliable as there is a	no data below 19 (extrapolation).	B1 (1)
(a)	$n < 10.8 \pm 0.748 n$		ы (1) M1
(0)	0.252 n < 10.8		M1
	0.2327 <10.0	n < awrt 42.9	A1 (3)
(f)	[No change to] $S_{pp} = 15\ 573.76$		(0)
	$\sum pf = 133486 - 2842 + 9016$ [=139660]	$\sum pf$ increases by $98(92-29)[=6174]$	M1
	$\frac{\sum f = "57.47" \times 34 + (92 - 29) \text{ or}}{\frac{133486 - 11648.35}{2120} \times 34 + (92 - 29)}{[= 1954 + 92 - 29 \approx 2017]}$	$\frac{\sum_{n} \sum_{n} f}{n} \text{ increases by } \frac{2120(92 - 29)}{34} = 3928.235]$	M1
	$S_{pf} = "139660" - \frac{2120 \times "2017"}{34}$ [= 13894]	S_{pf} increases by '6174' -'3928.235' [=2245.764]	dM1
	$h = \frac{"13894"}{[= 0.89]}$	$h = \frac{11648.35 + "2245.764"}{}$	M1
	15573.76	15573.76	111
		awrt <u>0.9</u>	Al (5)
(a)	M1 for substituting 62.4 into the regres	sion equation. Allow answer between 57 and 58	[13]
(b)	A1 awrt 57.5 B1 must include context and reference of eg 10 marks is 7.48 Allow equiv	to 0.748 Needs to refer to each mark being 0.748 or alent words eg score/ point for mark, pre or test for	a multiple pre-test,
(c) (d) (e)	B1 Not reliable with correct supporting B1 76 cao 1^{st} M1 for setting up inequality in p onl	reason eg it (10.8) is an outlier, outside the range y or for drawing the line $f = p$ on the graph. May be	implied
	by $p < n$ (ignore any lower limit	t) where $40 \le n < 46$ (allow incorrect inequality sig	n or =)
	Allow trial and improvement.		
	2^{nd} M1 rearranging to the form $ap < b$ w	with correct inequality sign. Allow $(1-0.748) p < 1$	0.8
	May be implied by $p < n$ (ignor	e any lower limit) where $42 < n < 44$	
(f)	1^{st} M1 Correct method to find new \sum_{I}	p_f or change in $\sum p_f$	
	2^{nd} M1 Correct method to find new \sum	f or change in $\frac{\sum p \sum f}{n}$ Allow 2018 or 2017	
	3 rd dM1 dep on both previous method r	narks being awarded. Correct method to find new ${ m S}$	pf with
	their changed $\sum pf$ and $\sum f$ or change in S_{pf}		
	4 th M1 expression for $b = \frac{S_{pf}'}{15573.76}$ with their changed S_{pf} and unchanged S_{pp}		
	A1 awrt 0.9 (from correct working)		

Question Number	Scheme	Marks
7. (a)	$P(X = 3) = F(3) - F(2) = \frac{1}{38}$	M1
	$P(X=3) = \frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2}$	M1
	$\frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2} = \frac{1}{28} \to n(n-1)(n-2) = 7980 $ (*)	M1 A1cso
	n n-1 n-2 58	(4)
(b)	$21 \times 20 \times 19 = 7980$	B1cso
	14 13 12	(1)
(c)	$a = F(0) = P(X = 0) = \frac{14}{21} \times \frac{15}{20} \times \frac{12}{19}$	M1
	$a = \frac{26}{95}$	A1
	$P(X=1) 3 \times \frac{14}{21} \times \frac{13}{20} \times \frac{7}{19} \left[= \frac{91}{190} \right] \text{ or } P(X=2) 3 \times \frac{7}{21} \times \frac{6}{20} \times \frac{14}{19} \left[= \frac{21}{95} \right]$	M1 M1
	$b = F(1) = P(X = 0) + P(X = 1) = \frac{26}{95} + \frac{91}{190} \text{ or } b = \frac{37}{38} - \frac{21}{95}$	dM1
	$b = \frac{143}{190}$	A1
		(6) [11]
	Notes	
(a)	1 st M1 for use of $F(3) - F(2)$ Accept $\frac{1}{38}$ 2 nd M1 product of 3 probabilities where the denominators are <i>n</i> , $(n-1)$ and $(n-2)$ and numerators are decreasing <i>k</i> , $(k-1)$ and $(k-2)$ This may be seen as a single term in a l expression. 3 rd M1 setting up equation for $P(X = 3) =$ product of correct 3 probabilities without replated A1cso fully correct solution with no errors seen	d the onger cement
(b)	B1cso correctly evaluated product. Allow $21(21-1)(21-2) = 7980$	
(c)	1 st M1 product of 3 probabilities for P(X = 0) The three probabilities can be in any arrange be implied by $\frac{26}{95}$	gement May
	1 st A1 $a = \frac{20}{95}$ oe must be clear this is the value for a	
	2 nd M1 product of 3 probabilities for P(X=1) or P (X=2) or $\frac{91}{190}$ or $\frac{91}{570}$ or $\frac{21}{95}$ or $\frac{7}{95}$	– oe seen.
	Condone incorrect labelling. The three probabilities can be in any arrangement	
	3^{rd} M1 × 3 or adding the 3 sets of the 3 fractions or $\frac{91}{190}$ or $\frac{21}{95}$ Condone incorrect label	ling
	4 th dM1 their $P(X = 0)$ + their $P(X = 1)$ or $F(2) - P(X = 2)$ (dep on 2 nd M1 being scored)	
	$2^{nd} A1 b = \frac{143}{190}$ oe must be clear this is the value for b	
	NB if $a = 0.273$ and $b = 0.7526$ implies the method marks.	